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Multiblock in Web of Science
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Approaches in sensometrics leading to higher order structures

Developments in sensory evaluation and consumer studies (Free Choice Profiling, Free
Sorting, Projective Mapping, CATA, ...) associated to higher-order data structures.
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Handling omnifarious datasets from analyical platforms in chemometrics

In a data fusion framework to depict systems observed with different types of
instrumental techniques (e.g. spectroscopic, chromatographic, imaging-based ones), at
different time, in different conditions, or under varying experimental setups.
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Data integration in a multi-omic perspective

Integration of multi-omic information in a meaningful way to provide a more
comprehensive analysis of a biological point of interest (Ritchie et al., 2015)
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Breast milk lipidome is associated with early growth trajectory in preterm infants (Alexandre-Gouabau, et al. ,2018).
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Multiblock data structures
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Figure 1 — Block with 2 modes (a), 3 modes (b) and 2 modes (c)
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Figure 2 — Multiblock with a partitioning of rows (a) vs columns (b) and L-Shaped data (c) _@mrlé
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Multiblock data analysis

Data specificities

= Heterogeneous datasets
m Flat datasets n< p

= Missing values

= High multicolinearity
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Multiblock data analysis

Exploratory =

J
Explanatory Y

Multivariate
analysis

Supervised Regression

approach

Prediction Validation

Classification

- J

= Assess the commonalities and differences between the different data sets
m Take into account their linking relation

m Predict a phenotype or the outcome of an intervention

m |dentify biomarkers / drivers of preference
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Key initial methods

PLS

(Wold, 1966 ; 1975
(Wold et al., 1984)

Non Linear Iterative Partial Least Squares

CCA/GCA

(Hotelling, 1936)
(Carroll, 1968)

PCA

(Pearson, 1901)

Principal Component Analysis
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GCA from a criterion perspective

PCA CCA / GCA
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Unsupervised multiblock analysis

From GCCA (Carroll, 1968) :
m Common component : t o< ¥ t(K)
m Block component : tF) = X, (X; X)X/t

To ComDim (Qannari et al., 2000 ; Qannari et al., 2001) :
m Common component : t o< ¥ A (¢
m Block component : tF) = X, X/t

2
= maxz_; cov(Lt) st ] = 1/ INDSCAL minglC_, [XeX] ~ A0t |

m Salience 1% shows the importance of X in the determination of t
= lterative determination of the successive common components by deflation

t® = X,w®

i
t® = X,w®

=X, w®
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A brief overview of unsupervied multiblock approaches (Mangamana et
al., 2019)

ComDim : Common Component and Specific Weights Analysis
CPCA : Consensus Principal Component Analysis
HPCA : Hierarchical Principal Component Analysis
MCOA : Multiple CO-inertia Analysis
MFA : Multiple Factor Analysis
SCA : Simultaneous Component Analysis

aded: Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences

Tools for multivariate data analysis. Several methods are provided for the analysis (i.¢., ordination) of one-table (e.g.. principal component analysis, correspor
two-table (2., coinertia analysis, redundancy analysis), three- RLQ analysis) and K-table (e.g., STATIS, multiple coinertia analysis). The philosop
package is described in Dray and Dufour (2007) <doi: 10,1863 X

FactoMineR: Multivariate Exploratory Data Analysis and Data Mining

Exploratory data analysis methods to summarize, visualize and deseribe datasets. The main principal component methods are available, those with the largest po
terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis
variables are categorical, Multiple Factor Analysis when variables are structured in groups, etc. and hierarchical cluster analysis. F. Husson, . Le and J. Pages (¢

MBAnalysis: Multiblock Exploratory and Predictive Data Analysis

Exploratory and predictive methods for the analysis of several blocks of variables measured on the same individuals. The methods included are: Multiblock Principal
Components Analysis (MB-PCA), Common Dimensions analysis (ComDim), Multiblock Partial Least Squares (MB-PLS) regression and Multiblock Weighted Covariate
analysis (MB-WCov). E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glélé Kakai, E.M. Qannari (2019) <doi:10.1016/i.chemolab.2019.103856>; E. Tehandao
Mangamana, R. Glélé Kakar, EM. Qannari (2021) <doi: 10.1016/j chemolab 2021, 104388>.

multiblock: Multiblock Data Fusion in Statistics and Machine Learning

Functions and datasets to support Smilde, Naes and Liland (2021, ISBN: 978-1-119-60096-1) "Multiblock Data Fusion in Statistics and Machine Learning - Applications in the
Natural and Life Sciences”. This implements and imports a large collection of methods for multiblock data analysis with common interfaces, result- and plotting functions,
several real data sets and six vignettes covering a range different applications.

RGCCA: Regularized and Sparse Generalized Canonical Correlation Analysis for Multiblock Data

Multiblock data analysis concerns the analysis of several sets of variables (blocks) observed on the same group of individuals. The main aims of the RGCCA package are: (i) N b
1o study the relationships between blocks and (ii) to identify subsets of variables of each block which are active in their relationships with the other blocks. ) n $ IS
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lllustration with immunology data in the framework of the ANR CIMMAP
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Characterising the effect of maternal prebiotic supplementation §oe

on perinatal Immune system maturation, Microbiota and breast ‘ I

Milk compositions for Allergy Prevention in high-risk children.
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P-ComDim, Path-ComDim (El Ghaziri et al., 2016 ; Cariou et al., 2018, 2019)

= Common components : t o< ¥y S A (1) et u o< ¥y SgA KD ul)
= Block components : t) = X, X[ t et u) = X,X]'v
= Salience associated to each block |A ()]

= maxyf,_ 8ucov(t® ul)y st |t =1/ minyf,_, & kax;x,x/T AW gy T HF

path matrix 8
| X | X |

T 1

X 0
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Application of a path-modeling approach within in the RedLosses
project (Luong et al., 2020)

REDLOSSES -

REDuction of food LOSSES by microbial spoilage prediction [French ANR project]

Microbiota | alkltbht by Sensory

(5.2% exp.) (42.4% exp.)

Volatilome

(26.1% exp.)
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Application of a path-modeling approach for deciphering causality

relationships between microbiota, volatile organic compounds and
off-odour profiles during meat spoilage

Pm = 150
- Filter OTUs by using
two criteria for low
count removal
+ CLRtransformation
raw-Microbiota - = ——1

Ry = 360

[ PR

Samples selection Pn =86

depending on
sensory analyses

pretreated LT Microbiota

Microbiota

N, =360

raw- Path-ComDim

Volatilome

=27

Samples selection B =27 P
depending on
pre- sensory analyses
treated [--—=-——=-~— -+ Volatil Sensory
Volatilome

[
N

N =380 N =80

* Average across technical replicates
+ logl0-transformation
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Application of a path-modeling approach for deciphering causality

relationships between microbiota, volatile organic compounds and
off-odour profiles during meat spoilage

Microbiota | Qi Sensory

(42.4% exp.)
exp.)

Dim. 2

(¢-axis) Dim. 1 (74%)
(v-axis) Dim. 2 (7.2%)

o Volatilome

(26.1% exp.)

The first dimension structures the data
according to storage time:

Dynamics of alteration characterized by the
evolution of sensory profiles and the
production of volatile compounds.

Microbiota, lower inertia:
Large number of species that do not all

Dim. 1
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Application of a path-modeling approach for deciphering causality

relationships between microbiota, volatile organic compounds and
off-odour profiles during meat spoilage

The smell of spoiled meat and the
production of ethyl acetate and ethanol
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.1 Lactococcus piscium, L. gelidum subs. gelidum,
. Psychrobacter, Latilactobacilus fuchuensis
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Multiblock approaches

= unsupervised and supervised methods mainly originated from psychometrics and
chemometrics,

= genese from Canonical Correlation Analysis
= common issues between supervised multiblock approaches and path modeling

m increasing interest for Data Fusion and Data Integration in the study of complex
systems toward holistic, data driven approach

Some challenges

m Predictive models in a path modeling context

= Introduction of non linearity with kernels

m take into account of a priori knowledge

m Partial couplings between blocks : Network PCA
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