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Approaches in sensometrics leading to higher order structures

Developments in sensory evaluation and consumer studies (Free Choice Profiling, Free
Sorting, Projective Mapping, CATA, ...) associated to higher-order data structures.
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Handling omnifarious datasets from analyical platforms in chemometrics

In a data fusion framework to depict systems observed with different types of
instrumental techniques (e.g. spectroscopic, chromatographic, imaging-based ones), at
different time, in different conditions, or under varying experimental setups.
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Data integration in a multi-omic perspective

Integration of multi-omic information in a meaningful way to provide a more
comprehensive analysis of a biological point of interest (Ritchie et al., 2015)
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Breast milk lipidome is associated with early growth trajectory in preterm infants (Alexandre-Gouabau, et al. ,2018).
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Multiblock data structures
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Figure 1 – Block with 2 modes (a), 3 modes (b) and 2 modes (c)
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Figure 2 – Multiblock with a partitioning of rows (a) vs columns (b) and L-Shaped data (c)
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Multiblock data analysis

Data specificities

Heterogeneous datasets

Flat datasets n � p

Missing values

High multicolinearity
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Multiblock data analysis

Multivariate 
analysis

Unsupervised
approach

Supervised
approach

Factorial
decomposition

Clustering

Regression

Classification
Prediction Validation

Exploratory

Explanatory

Main goals

Assess the commonalities and differences between the different data sets

Take into account their linking relation

Predict a phenotype or the outcome of an intervention

Identify biomarkers / drivers of preference
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Key initial methods

Principal Component Analysis (Generalized) Canonical Correlation Analysis Non Linear Iterative Partial Least Squares 

From M. Tenenhaus

(Pearson, 1901) (Hotelling, 1936)
(Carroll, 1968)

(Wold, 1966 ; 1975) 
(Wold et al., 1984)

PCA CCA / GCA PLS

𝒕(1)=X1𝒘
(1)

𝒕

𝒕(2) = 𝐗2𝒘
(2)

𝒕(2) = 𝐗2𝒘
(2)
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GCA from a criterion perspective
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Unsupervised multiblock analysis

From GCCA (Carroll, 1968) :
Common component : t ∝ ∑k t(k)

Block component : t(k) = Xk (X>
k Xk )

−1X>
k t

To ComDim (Qannari et al., 2000 ; Qannari et al., 2001) :
Common component : t ∝ ∑k λ (k)t(k)

Block component : t(k) = Xk X>
k t

max ∑
K
k=1 cov2(t, t(k)) s.t. ‖t‖= 1 / INDSCAL min∑

K
k=1

∥∥∥Xk X>
k −λ (k) t t>

∥∥∥2

F

Salience λ (k) shows the importance of Xk in the determination of t
Iterative determination of the successive common components by deflation
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A brief overview of unsupervied multiblock approaches (Mangamana et
al., 2019)

ComDim : Common Component and Specific Weights Analysis
CPCA : Consensus Principal Component Analysis
HPCA : Hierarchical Principal Component Analysis
MCOA : Multiple CO-inertia Analysis

MFA : Multiple Factor Analysis
SCA : Simultaneous Component Analysis
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Illustration with immunology data in the framework of the ANR CIMMAP

Characterising the effect of maternal prebiotic supplementation
on perinatal Immune system maturation, Microbiota and breast
Milk compositions for Allergy Prevention in high-risk children.

ComDim
results
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Supervised multiblock analysis
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Integration of the relationships between blocks

P-ComDim, Path-ComDim (El Ghaziri et al., 2016 ; Cariou et al., 2018, 2019)

Common components : t ∝ ∑kl δkl λ
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Application of a path-modeling approach within in the RedLosses
project (Luong et al., 2020)

Sensory

Volatilome

Microbiota

(5.2% exp.)

(26.1% exp.)

(42.4% exp.)
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Application of a path-modeling approach for deciphering causality
relationships between microbiota, volatile organic compounds and
off-odour profiles during meat spoilage
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Application of a path-modeling approach for deciphering causality
relationships between microbiota, volatile organic compounds and
off-odour profiles during meat spoilage

Dim. 1

D
im

. 2

The first dimension structures the data
according to storage time:

Dynamics of alteration characterized by the
evolution of sensory profiles and the
production of volatile compounds.

Microbiota, lower inertia:
Large number of species that do not all
contribute to this dynamic.
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Application of a path-modeling approach for deciphering causality
relationships between microbiota, volatile organic compounds and
off-odour profiles during meat spoilage
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Lactococcus piscium, L. gelidum subs. gelidum,

Psychrobacter, Latilactobacilus fuchuensis

The smell of spoiled meat and the
production of ethyl acetate and ethanol
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Conclusion

Multiblock approaches

unsupervised and supervised methods mainly originated from psychometrics and
chemometrics,

genese from Canonical Correlation Analysis

common issues between supervised multiblock approaches and path modeling

increasing interest for Data Fusion and Data Integration in the study of complex
systems toward holistic, data driven approach

Some challenges

Predictive models in a path modeling context

Introduction of non linearity with kernels

take into account of a priori knowledge

Partial couplings between blocks : Network PCA
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Thanks for your attention
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