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A B S T R A C T

A chemometric data analysis challenge has been arranged during the first edition of the “International Workshop
on Spectroscopy and Chemometrics”, organized by the Vistamilk SFI Research Centre and held online in April
2021. The aim of the competition was to build a calibration model in order to predict milk quality traits exploiting
the information contained in mid-infrared spectra only. Three different traits have been provided, presenting
heterogeneous degrees of prediction complexity thus possibly requiring trait-specific modelling choices. In this
paper the different approaches adopted by the participants are outlined and the insights obtained from the an-
alyses are critically discussed.
1. Introduction

Following the interesting results obtained during similar events [see
e.g. Refs. [34,35] and references therein], a chemometric challenge has
been held during the inaugural edition of the “International Workshop on
Spectroscopy and Chemometrics”, organized by the Vistamilk SFI
Research Centre in April 2021.

The dataset provided to the participants contained the values for three
milk quality traits for different milk samples along with the corresponding
mid-infrared spectra. Mid-infrared spectroscopy (MIRS) represents a
convenient and non-disruptive way to collect vast amounts of data in a
relatively cheap and fast way. In recent years, such data have been proven
useful to predict several different quantities of interest in the dairy
framework; see for example the results in Refs. [3,5,26] for coagulation
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properties of milk, animal energy efficiency, and fatty acids concentration,
respectively. Moreover, nowadays mid-infrared spectroscopy is routinely
used in the analysis of cow milk samples in order to quantify fat, protein
and lactose content, providing a convenient and reliable alternative to
other techniques such as wet chemistry; see Ref. [10] for a recent review
on th e various applications of MIRS in the dairy framework. Despite these
advantages, MIRS data introduce some relevant challenges from a
modelling perspective, such as high-dimensionality and the strong corre-
lations among the variables (i.e. the wavenumbers). For this reason several
different strategies have been explored in literature and readers may refer
to the recent work by Ref. [17] to see how different machine learning and
statistical techniques performed on such data.

The primary objective of the competition was, therefore, to evaluate
the ability of the participants to propose different regression strategies to
Dublin, Belfield, Dublin 4, Ireland.
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Table 1
Mean, median, standard deviation (SD), minimum and maximum values for the
provided traits.

Trait Mean Median SD Minimum Maximum

κ-casein 5.92 5.71 1.83 1.36 22.23
CMS 229.99 172.45 343.10 63.12 4063.00
pH 6.68 6.68 0.12 5.86 7.06
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predict milk quality traits. In particular, it has been required to provide
accurate predictions for the traits exploiting only the information con-
tained in the corresponding milk spectra. The variables to be predicted
have been chosen in order to introduce some trait specific challenges, as
it will be clear in the next section.

Different participants, or groups of, took part in the competition. In
this work, the best six contributions, evaluated in terms of their predic-
tive performances, are presented focusing both on the results obtained
and on the subjective choices the participants made in terms of pre-
processing and modelling paradigms.

2. Data description and challenge

A dataset containing 622 milk samples from 622 cows was collected
between August 2013 and August 2014 from 7 different Irish research
herds. The samples originated from Holstein-Friesian, Jersey and Nor-
wegian Red cows, as well as their crosses; all cows were fed a predomi-
nantly grass-based diet with occasional concentrate and grass silage
supplementation. The samples were collected during morning and eve-
ning milking at different stages of lactation and different parities. All
samples were analyzed by the same MilkoScan FT6000 (Foss Electronic
A/S, Hillerød, Denmark) milk analyzer, producing 1060 transmittance
data points in the mid-infrared light region.

Milk pH, Casein Micelle Size (CMS) and κ-casein were provided for
the analyses. Milk pH of all samples was assessed with a SevenCompact
pH meter S220 (Mettler Toledo AG, Greifensee, Switzerland). The casein
micelle hydrodynamic diameter was determined using a Zetasizer Nano
system (Malvern Instruments Inc., Worcester, UK). Lastly, κ-casein was
determined using reverse-phase high performance liquid chromatog-
raphy (HPLC) using an adaptation of the method of Visser et al. (1991)
and is expressed as grams per liter of milk.

The original dataset was divided into training and test set. The
training set contained 399 observations for κ-casein, 538 observation for
CMS, and 548 observations for pH. Some spectra were therefore associ-
ated with only one or two of the reference traits, with the missing trait
being considered as a missing value. Some summary statistics for the
mentioned traits are reported in Table 1 while a graphical representation
of their frequency distributions is provided in Fig. 1. For all the obser-
vations the corresponding mid-infrared spectra, with measures for 1060
wavenumbers, were available. A test dataset has been provided to the
participants, with 69 spectra with unknown values for the three reference
traits. Therefore, the objective of the competition was to predict the test
set values for κ-casein, CMS, and pH values by exploiting the spectral
information only. Note that the information about the specific wave-
numbers has not been shared with the participants; nonetheless they
were aware that the region spanned by the provided spectra goes from
900 to 5000 cm�1. The three traits provided have been carefully selected
according to their different characteristics [see Ref. [17]]; CMS has been
shown to have low predictability while κ-casein and pH has a
medium-low and a medium-high predictability, respectively. Moreover,
all these traits are important for milk processing. The datasets provided
for the competition are publicly available at http://hdl.handle.net/1101
9/2597.

The contributions from the participants have been ranked considering
the Root Mean Squared Error computed on the test dataset (RMSEP)

RMSEPkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðyik � ŷðjÞik Þ
2

n

s

where yik and ŷðjÞik represents respectively the i-th reference value and the
corresponding prediction for the k-th trait by the j-th participant, while n
is the total number of observations in the test set. In order to provide a
single measure to rank the performances across all the traits a relative
error has been considered, that has been defined as
2
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with j spanning over the total number of participants. Thus for each trait,
each participant's RMSEP is divided by the best RMSEP for that trait and
this is summed up over the three traits. The more the value of (1) is close
to 1, the better the corresponding method has performed over the
available traits. The rationale behind the choice to consider (1) to eval-
uate the results, lies in the necessity to have a relative measure being trait
independent and not being influenced by the different error magnitudes
and degree of difficulty for the three traits.

3. Modelling approaches and results

3.1. Participant 1

The data have been analyzed by considering different tabular methods
which, in the machine learning literature, are considered in those situ-
ations where it is possible to represent the data in terms of arrays or
tables. As a consequence, the ordering of the wavelengths, and their
possible chemical relations due to their spectral proximity, has not been
taken explicitly into account. All the analyses reported have been con-
ducted using pandas, sklearn and matplotlib libraries [see Ref. [33]; and
references therein for the considered methods] in Python [41] and the
code required to reproduce the results is freely available at https://gith
ub.com/mlgig/vistamilk-spectroscopy-challenge.

The data analysis was performed according to a multi-step procedure.
In the first exploratory step, some descriptive statistics have been
computed to check the presence of missing values. Rows with missing
values in the training set for the given reference traits have been
removed. Possible outliers have been identified and removed coherently
with the work by Ref. [17] which suggested to keep only those rows with
a value that falls within three standard deviations from the mean of the
reference trait. Moreover, data visualization tools have been exploited to
see whether there were unusual values with respect to the normal ex-
pected range, and to understand the behaviour of the samples for each
one of the reference traits.

In the subsequent step, methods belonging to different categories and
learning strategies have been selected. Simpler models, being easier to
interpret in terms of the domain knowledge, were preferred. Regularized
models weremainly considered in order to deal with noisy and correlated
features, andmore complex feature selection or dimensionality reduction
methods have not been tested. Some of the models evaluated are listed in
Table 2. When running the analyses a 4-fold cross-validation (CV)
scheme was adopted and the cross-validation RMSE (RMSECV) was
employed to compare the performances of the different algorithms.
Additionally, a single train-test split was also run to check what the
models learned and, when possible, which were the important features.
The CV results were compared to the single-split results. Once the best
model for each trait was identified based on the performances from CV
and single-split, that model was used to predict the unlabeled test set.

In Table 3 the results in terms of the RMSECV, averaged over the 4-
folds, are reported for the more promising models. Interestingly, the
table shows how linear models, such as PLSR and Ridge regression,
provide comparable results and they have better accuracy with respect to

http://hdl.handle.net/11019/2597
http://hdl.handle.net/11019/2597
https://github.com/mlgig/vistamilk-spectroscopy-challenge
https://github.com/mlgig/vistamilk-spectroscopy-challenge


Fig. 1. Frequency distributions of the three reference traits for the training set.

Table 2
Different tabular methods considered, listed according to their sklearn
implementations.

Modeling Strategy Implementation in sklearn

Linear Models LinearRegression(), PLSRegression(), RidgeCV()
Lasso(), ElasticNet(), SVR(kernel ¼ ‘linear’)

Ensembles Methods RandomForestRegressor(n_estimators ¼ 100),
GradientBoostingRegressor(n_estimators ¼ 100)
Other variants: Xgboost, LightGBM

Other Approaches KNeighborsRegressor(n_neighbors ¼ 1), SVR(kernel ¼ ’rbf’),
MLPRegressor(), FCN, Resnet [7].

Table 3
RMSECV averaged over the four cross-validation folds (standard deviations in
brackets).

Method κ -casein CMS pH

LASSO 1.51 (0.04) 56.78 (19.35) 0.12 (0.02)
PLSR 1.24 (0.02) 58.99 (20.68) 0.10 (0.01)
Random Forest 1.18 (0.08) 63.33 (17.74) 0.09 (0.01)
Gradient Boosting Regressor 1.19 (0.1) 64.99 (18.76) 0.09 (0.01)
SVR 1.36 (0.05) 57.46 (19.61) 0.10 (0.01)
MLP Regressor 1.38 (0.09) 58.25 (18.32) 0.18 (0.02)
Ridge regression 1.16 (0.06) 57.16 (20.21) 0.08 (0.01)

Fig. 2. Saliency map computed from ridge regression estimated coefficients on
a spectrum used for κ-casein prediction. High red intensities corresponds to
more relevant wavenumbers. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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more complex non-linear strategies. This behavior confirms what has
been seen also in Ref. [17], thus possibly indicating that the relations
between the three traits and the spectra is close to linear. For two out of
three reference traits ridge regression had the best results, with the
LASSO slightly outperforming it for CMS. This method provides small
improvements over the three traits with respect to Partial Least Square
Regression (PLSR) which is usually considered as the baseline model in
the milk spectroscopy literature. Ridge regression has been run on a
normalized version of the data with the penalty being tuned via an
additional cross-validation scheme, with alphas¼ np.logspace(-2, 2, 10).
Moreover it is worth noting that ridge regression allows, by looking at the
estimated coefficients, to identify the wavenumbers deemed as most
3

relevant for the prediction of a specific trait. In Fig. 2 it is represented a
spectrum with the ridge learned coefficients, for κ-casein prediction,
highlighted as a saliency map.

Lastly note that other strategies were tested. In fact, the wavenumbers
were transformed from transmittance to absorbance and, moreover,
separate analyses have been conducted with all the traits being log-
transformed. Nonetheless, none of these transformations have led to
improvements in the RMSECV. Given the above considerations, the ridge
regression model has been used to predict the values of the traits for the
test dataset.

3.2. Participant 2

Data collected via mid-infrared spectroscopy techniques, even if
somehow resembling time series data, do not have a time component.
Nonetheless, spectroscopy data have been successfully modelled as time
series in the machine learning community [see e.g. Refs. [2,29]]. Such
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approaches have been tested with considerable success, especially for
classification, but most of these methods can be easily adapted to the
regression framework [40]. Therefore, for the data analysis step, the
following time series models were evaluated: ROCKET [11], Mini-
ROCKET, EnsembleMiniROCKET, Fully Convolutional Neural Networks
(FCN), Residual Networks [ResNet, [21]] and the recently proposed
SeQuence Miner on Multiple Representation of time series [MrSQM,
[30]].

ROCKET was originally proposed as a time series classifier that uses
multiple random convolutional kernels to extract patterns in the time
series. A random kernel is a vector of random weights and is normally
shorter than the input time series. The convolution computes the dot
product between the kernel itself and a series of windows (of the kernel's
length) sliding from the beginning to the end of the input time series.
Typically, the output of the dot product is greater at the window where
the kernel matches the input. The output then can be used to produce
features (e.g. max pooling) for model training with ridge regression to
classify time series. As a consequence themethod can be easily adapted to
regression problems. MiniROCKET represents an updated version of this
approach which, by optimizing the choices of kernels, results in an
extremely fast algorithm. In the area of time series classification, this
method is currently considered to be the state of the art. A recent study
demonstrated that ROCKET-type algorithms work very well on time se-
ries regression [see Ref. [40]].

A new ensemble approach, named EnsembleMiniROCKET and based
on MiniROCKET model, has been specifically proposed for this data
challenge. It consists of an ensemble of 100 MiniROCKET regression
models run on subsets of adjacent wavenumbers. The subsets are chosen
randomly and they have varying dimensions, spanning from 100 to 250
features.

Other methods proposed in the deep learning literature, such as the
FCN and the ResNet architectures, were tested. In addition MrSQM, a
time series classification method based on symbolic representations, was
also evaluated. This method allows to interpret the obtained results by
providing an indication about which variables are regarded as more
important for prediction purposes.

Prior to the analysis, the same pre-processing steps as in Section 3.1
have been performed. The 4-fold RMSECV was used to compare the
models and the results are reported in Table 4. The ROCKET algorithm
and its modifications tend to perform better for all the three traits.
Notably the ensemble approach, specifically proposed for this challenge,
provided slight improvements for two out of three traits, with respect to
all the considered competitors, thus giving a first indication about the
soundness of the strategy and the need to test it thoroughly on different
datasets. Given these considerations, EnsembleMiniROCKET has been
used to provide the predictions for the unknown traits values on the test
set. Lastly, after the competition some of the considered methods have
been tested without considering the water absorption regions, with slight
improvements in the results.

3.3. Participant 3

The data cleaning and pre-processing steps started with the identifi-
cation of possible outliers. As it has been done in Ref. [17]; the outliers
have been considered to be those values of the three traits that fell
Table 4
RMSECV averaged over the four cross-validation folds (standard deviations in
brackets).

Method κ-casein CMS pH

ROCKET 1.24 (0.08) 56.88 (19.06) 0.10 (0.01)
MiniROCKET 1.21 (0.12) 57.18 (19.03) 0.09 (0.01)
EnsembleMiniROCKET 1.19 (0.11) 56.99 (18.86) 0.08 (0.01)
FCN 1.35 (0.15) 65.55 (12.40) 0.14 (0.01)
ResNet 1.33 (0.14) 63.71 (14.96) 0.13 (0.01)
MrSQM 1.40 (0.11) 56.64 (18.46) 0.10 (0.01)
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outside of 3 standard deviations from the respective mean. These out-
liers, along with the missing values, were removed from the training set:
as a result κ-casein had 396 observations while CMS and pH had
respectively 526 and 542 observations. As visible from Fig. 1, the dis-
tribution of CMS resulted to be positively skewed, therefore its values
were transformed on a logarithmic scale for the subsequent analyses.

One of the more troublesome aspects of spectroscopy data is usually
represented by their high-dimensionality which is often paired with
strong multi-collinearities among the wavenumbers. In order to deal with
these challenges, Principal Component Analysis [PCA, see e.g. Ref. [43]]
has been considered. More specifically, the first 30 principal components,
explaining more than 90% of the original variability, were retained. As a
consequence, the training set considered in the analyses consists in the
values for the traits to be predicted along with p¼ 30 predictors. In order
to provide coherent predictions, the testing set was transformed
accordingly.

As a regression strategy to predict the values for the reference traits,
Generalized Additive Models have been considered [see Ref. [16]; for an
overview]. These models can be expressed as follows

Eðyjx1;…; xpÞ ¼ β0 þ
Xp

j¼1
fjðxjÞ

where x1, …, xp denote the predictors, y is the outcome to be predicted
and fj's are nonparametric and unspecified smooth functions. In the re-
ported analyses, smoothing splines over the principal components have
been considered for fj; this might lead to a gain in terms of flexibility
when describing the relationship between the trait and each single pre-
dictor. Note that similar spline-based approaches, considering PLS
instead of PCA, have been already fruitfully adopted in the chemometrics
framework and it might have been interesting to test them on the dataset
provided [see e.g. Refs. [13,24]].

The models were built in a step-wise fashion, considering different
alternatives for each single fj [see Ref. [19]; for more details]. More
specifically, for example, x1 could enter in the model either linearly or
modelled by means of a spline with 2, 3 or 4 equivalent degrees of
freedom. Different combinations corresponding to the possible choices
have been tested and the best one was selected according to the Akaike
information criterion (AIC).

Fig. 3 shows the normal QQ-plots for the residuals of the three
models, one for each reference trait. They tend to follow a normal dis-
tribution, especially for the pH, with some discrepancies on the tails for
the other two traits. The plots served as a partial confirmation about the
soundness of the adopted modelling strategy which consequently has
been considered to predict the trait values for the testing set. All the
analyses were carried out using the R software [36].
3.4. Participant 4

Some preliminary pre-processing step were conducted before pro-
ceeding to the analysis. At first, the samples for which the response
variable were not available were removed. The variables CMS and
κ-casein were logarithm transformed, in order to reduce the skewness.
Finally, the response variable and the spectra were both centered.

Since the covariates were in the form of curves, the problem was
tackled with a functional regression approach [37], that is

y ¼
Z

βðωÞXðωÞdωþ ϵ;

with the response variable y being in turn pH, κ–casein and casein micelle
size, X(ω) the MIR spectrum and β(ω) the unknown functional coeffi-
cient. A B-spline basis [9] defined on an adaptive grid was used, thus
leading to different number of basis functions in different regions of the
spectrum. The left panel of Fig. 4 highlights the difference between a
regular grid, on the left, and the adaptive grid, on the right. In particular,
the adaptive grid allowed to leverage on prior information about the



Fig. 3. Normal QQ-plots of the residuals of the model for κ-casein, CMS and pH.

Fig. 4. Left: comparison between standard and adaptive. Right: estimated functional coefficients for the variable pH.
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chemical characteristics of the spectra, for instance by reducing the
number of nodes in the noisy areas induced by water absorption. These
regions, highlighted in grey in the right panel of Fig. 4, corresponds to the
wavenumbers from 1580 to 1715 cm�1 and from 2986 to 3545 cm�1

[18]. Both ridge and lasso penalization have been used on the coefficients
of the basis, in order to further shrink them in the noisy regions, deemed
as less informative. Finally, a 10-fold cross-validation was used to select
the best type of regularization, the number of basis and the best
smoothing parameter for each of the three response variables.

The right panel of Fig. 4 shows the estimated functional coefficients
for the variable pH. In this particular case the selected model corre-
sponded to the one with 75 adaptive basis and considering the lasso as
regularization strategy. In the grey areas, that coincides with the noisy
areas induced by water absorption, the model shrinks the coefficients to
zero. This shows the strengths of the penalization combined with an
adaptive functional approach. On one side, the functional nature of the
data was exploited without the need to remove parts of the spectrum; on
the other side, the model remained very flexible and was still able to
5

shrink the coefficients of the non-informative regions. Moreover, the
functional coefficients can be interpreted in terms of the chemical
characteristics of the milk. Different parts of the spectrum are indeed
linked to different chemical compositions and chemical bonds, due to the
differences in light absorption [18]. This peculiarity can be used by ex-
perts to identify statistically significant areas of the spectrum and tomake
inference on their influence on the response variable.

Due to space limitations, the results for the other two traits are not
shown. In the case of κ-casein, the best model was again the lasso with 50
adaptive basis. The behavior of the coefficients was similar to the one
obtained for pH in the two water regions, while the peaks differed in
locations and size in the other parts of the spectrum. In the case of CMS,
the best model had 15 basis and employed the ridge as regularization
strategy. The results were slightly different, in particular the water re-
gions were not zero and the overall functional coefficient presented a
very smooth behavior. Nonetheless, these results might be due to the
difficulty in estimating such variable and need to be discussed with an
expert.
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3.5. Participant 5

In the pre-processing steps, the data in the training set were centered
and scaled, with the same transformation being applied to the test set.
Moreover, CMS was log transformed, in order to reduce its skewness.
Note that no outlier observations were removed and that the full set of
1060 wavenumbers was used for training and prediction.

Hierarchical clustering with distance matrix based on the absolute
value of correlation between the spectra and Ward's clustering criterion
was used to find groupings of the spectra. The resulting dendrogram is
displayed in Fig. 5; after a graphical inspection, the wavelengths were
assigned to one of the fifteen clusters. The clustering was used for one of
the modelling approaches described below.

The available training dataset with known trait values was initially
split into 50 random splits of training (50%) and validation (50%) sets to
select the optimal algorithm for regression. The algorithms were tuned
using further cross-validation of the training subsets. All analysis was
done in R and the code is available at https://github.com/domijan/
vistamilk. The following algorithms were used for regression:

● Lasso from library glmnet [15].
● Random forest (RF) from library ranger [45] with and without reg-

ularization (RF þ VS) [12].
● Linear regression with the first six principal components (lm þ PCA)

as input features.
● Linear regression with the first six kernel principal components

(lm þ kPCA) using Gaussian kernel implemented in library kernlab
[23].

● Random forest with six kernel principal components (RF þ kPCA) as
input features.

● Random forest with a Gaussian kernel in place of the transmittance
values (RF þ kernel) as input features.

● Support vector machine (SVM) for regression implemented in library
e1071 [28].

● Partial least squares (PLS) with 3, 4 and 5 components implemented
in library pls [27].

● Linear regression with a naive approach to feature selection (lmþ15);
fifteen wavelengths were selected as predictors using the hierarchical
clustering. From each one of the fifteen clusters in Fig. 5, the wave-
length with the highest correlation with the response variable was
selected and employed as an input to the regression model.

● Bayesian additive regression trees [BART, [6]] as in bartMachine li-
brary [22].

● Post-hoc ensemble model that averaged over test set predictions from
all of the models described above.
Fig. 5. Dendrogram of the spectra clustered by hierarchical clustering with
distance matrix based on the absolute value of correlation between the spectra
and Ward's clustering criterion.

6

The predictive ability of the algorithms was evaluated according to the
RMSE computed on the validation set. Table 5 displays the average RMSE
over the 50 random splits with standard deviation in brackets. All the
models considered had comparable performance; the best scoring algo-
rithm for all three traits was the ensemble model, which slightly out-
performed the other models. As a consequence, it was selected and trained
over the entire training set and used to predict the values for the test set.

3.6. Participant 6

First of all, an exploratory data analysis has been performed with
Unscrambler X (Camo Analytics) and with the R software. The data were
visualized by plotting the raw spectra, as well as the calculated
interquartile-range of each wavelength which allowed to identify two
highly noisy regions. Several spectral pre-treatments were tested such as
Standard Normal Variate, first and second derivative Savitzky-Golay
transformations and Multiplicative Scatter Correction (MSC) with the
latter one being chosen as the most promising. According to the identi-
fication of the high-noise-level regions, in the subsequent analyses two
approaches have been taken: in the first case the original 1060 wave-
numbers have been consideredwhile, in the latter, the noisy regions were
removed leading to datasets with 533 features. In both the cases, CMS
values were log-transformed to obtain data following more closely a
Gaussian distribution.

After removing the missing values for each trait, a calibration set was
created based on the training data using the Puchwein algorithm
implemented in the prospectr package [39] with the remaining samples
left out for validation. The Puchwein algorithm selects samples by iter-
atively eliminating similar samples using the Mahalanobis distance. Even
if no outliers have been removed beforehand, they have not been
included in the calibration subset by the algorithm.

Afterwards principal component analysis was considered for mean-
centered and MSC-treated mean-centered spectra. As an exploratory
insight, it has been observed that a higher number of principal compo-
nents was needed to capture 95% of variance for MSC-treated spectra.

Several regression models were tested, including Random forest,
Support Vector Machines, and sparse PLS (S-PLS). The models used to
provide the test dataset predictions were the ones with the lowest
RMSECV and with the best fit when considering a regression of the
predicted values versus the reference ones. For κ-casein and pH, the best
model obtained was S-PLS, implemented in the spls package [8], after
removal of high-noise-levels (4 and 5 factors, respectively). For CMS the
best results were obtained for the S-PLS model trained on the full spec-
trum after applying MSC (1 latent variable). The caret [25] training
included three resampling iterations with 5-folds cross validation.
Wavenumbers selected by the S-PLS model for each trait were plotted
over the spectra in Fig. 6 (311, 145, and 266 variables for pH, κ-casein,
and CMS respectively). A noticeable overlap in variables selected has
been observed between models predicting pH and CMS.
Table 5
RMSE obtained over 50 random splits of the training set into training and vali-
dation for κ-casein, CMS and pH. In brackets the standard deviations are
reported.

Algorithm κ-casein CMS pH

ensemble 1.48 (0.21) 367.5 (31.7) 0.11 (<0.01)
lasso 1.53 (0.21) 368.3 (31.3) 0.12 (<0.01)
lmþ15 1.52 (0.18) 366.2 (31.9) 0.11 (0.01)
lm þ PCA 1.50 (0.20) 367.9 (31.4) 0.12 (<0.01)
lm þ kPCA 1.57 (0.19) 368.2 (31.4) 0.11 (<0.01)
PLS 1.50 (0.19) 366.0 (31.4) 0.12 (<0.01)
BART 1.62 (0.12) 368.3 (31.9) 0.12 (0.01)
RF 1.53 (0.18) 367.9 (31.5) 0.12 (0.01)
RF þ VS 1.52 (0.19) 367.8 (31.6) 0.12 (0.01)
RF þ kPCA 1.57 (0.21) 369.4 (31.6) 0.12 (<0.01)
RF þ kernel 1.53 (0.21) 370.0 (31.6) 0.12 (<0.01)
SVM 1.54 (0.21) 371.0 (31.3) 0.11 (<0.01)

https://github.com/domijan/vistamilk
https://github.com/domijan/vistamilk


Fig. 6. Variables selected (red vertical lines) by S-PLS for the reference traits. (For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)

Table 6
Root Mean Squared Error computed for the test set (RMSEP) for the reference
traits and the overall relative error (RERR) as defined in 1. In bold, the best re-
sults are highlighted for each single trait and for the overall prediction.

Participant RMSEP RERR

κ-casein CMS pH

1 1.77 430.78 0.09 1.019
2 1.82 431.48 0.11 1.104
3 1.76 428.42 0.12 1.127
4 1.68 430.91 0.09 1.002
5 1.71 428.27 0.11 1.080
6 1.69 429.01 0.11 1.076
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3.7. Other approaches

In the previous sections the best strategies, in terms of the obtained
results, have been outlined and discussed. Nonetheless, some interesting
approaches have been adopted also by other participants to the compe-
tition. In particular one of the participants detected the outliers by means
of a multiple linear regression, fitted for each trait. Afterwards the
outlying observations have been identified using the Bonferroni outlier
test [see e.g. Ref. [14]] and consequently deleted. Another researcher
considered, when building the calibration models, the Interval Partial
Least Squares model [iPLS, [32]]. This is a graphically oriented method
which can be seen as a local and interval-based extension of the standard
PLS. As a consequence it might be particularly useful to interpret the
results, since it highlights different contributions from distinct spectral
regions. Moreover a modification of the iPLS algorithm, called Backward
Interval Partial Least Square [biPLS, [31]], has been tested. This
approach works similarly to iPLS but it deletes sequentially the poorest
performing interval. For an application of these algorithms on
near-infrared data readers may refer to Ref. [46].

4. Discussion

As mentioned in Section 2, the contributions have been evaluated
considering the RMSEP for each single trait while, for the overall per-
formances, the relative error as defined in (1) has been computed. By
thoroughly looking at the final results, reported in Table 6, some relevant
insights can be obtained. First of all, it is clear that the performances of
different methods are usually trait specific. This seems coherent with the
7

so called no free lunch theorem [see e.g. Ref. [44]] which provides an
essential warning about the danger of comparing and ranking different
algorithms by studying their performances on a small set of prediction
problems. A general conclusion to draw is concerned with the poor
predictability of the CMS, thus providing coherent indications with the
ones obtained in previous works [see e.g. Refs. [17,42]]. Note that
different contributions performed comparably when predicting the test
set values. Lastly, we would like to highlight that all the results need to be
interpreted cautiously since the techniques have been evaluated on a
small test set, making it difficult to properly generalize the findings.

A common choice that all the participants had to make was concerned
with the possibility to transform the data prior to running their analyses.
A first possible transformation consisted in considering absorbance
instead of transmittance values. The well known Beer-Lambert law seems
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to suggest that working on the absorbance scale can lead to improve-
ments in the performances, even if sometimes the benefits are minimal.
The results in Section 3.1, where the participants tried both the ap-
proaches without noting significant improvements, as well as prior ex-
periences of some of the authors, seem to suggest that this transformation
is not strictly needed when analyzing MIRS data.

Other transformations have been applied on the spectra by some of
the participants, as a pre-treatment step. Procedures such as the Multi-
plicative Scatter Correction or the Savitzky-Golay derivative smoothing
have been tried but, again, without strong ameliorations of the results.
Such transformations are usually hugely important when dealing with
highly-noisy spectra, often encountered in the near-infrared spectroscopy
applications. Nonetheless, in the dairy framework and when MIRS data
are available, they seem to have a lower impact.

Another subjective decision that might have influenced the results
was concerned with the outliers removal process. Outliers detection can
be a critical step when working with spectroscopy data as it might be
troublesome to discriminate between true extreme values and data
collection errors, often due to the instruments used. In some of the
contributions the analyses have been run considering all the available
observations while some participants decided to follow the same
approach considered in Ref. [17], where the observations have been
considered as outliers when they had unusually large or small values for a
reference trait; none of the participants considered procedures identi-
fying outlying observations based on the spectra and therefore on un-
usual values of the wavenumbers. After the competition, the values for
the traits on the test dataset were made publicly available. After
re-running the analyses and re-evaluating their approach, a group of
participants noted an improvement in the performances on the test set
when outlying observations were not removed from the training set. This
behavior might act as a partial confirmation of the challenges involved in
the definition of the concept of outliers.

The participants were not provided with the specific information
about the wavenumbers. Therefore, it was not straightforward to include
prior information on the role of different wavenumbers in the modelling
strategies. One of the possibly most impactful choices is concerned with
the removal of the highly noisy regions related to water absorption
processes, which are usually present when analyzing milk samples. In
Ref. [17] these regions have been removed, according to the suggestions
in Ref. [20]. In the competition only two contributions considered the
presence of the water absorption phenomenon: in fact in Section 3.4 this
information has been used to devise an adaptive functional approach
which provided good results both in terms of performances and in terms
of interpretability. On the other hand, in Section 3.6, the interquantile
range for each wavenumbers has been used as a clever data-driven
approach to identify noisy variables in the data. From previous experi-
ences and from other analyses on similar data, it has been noted that the
removal of highly noisy regions can be strongly influential and lead to
improvements in the predictive performances.

In the chemometrics framework, Partial Least Squares based methods
still constitute the state of the art, as they are widely used in different
applications usually providing good results. Nonetheless this challenge
showed that it is worth looking at different modelling tools when
analyzing spectroscopic data as they might slightly improve the quality of
the obtained predictions or enhance the interpretability. In fact, one of
the most interesting outcomes of the competition is related to the het-
erogeneity of the proposed approaches. Gathering together participants
having different backgrounds, spanning from animal science to more
statistical or machine learning ones, the contributions provided a wide
overview about different possible ways to look at MIRS data. In most of
the cases the spectra have been treated as standard vectors, also called
tabular approaches in Section 3.1, thus disregarding the natural ordering
of the wavenumbers. Nonetheless, the contributions in Section 3.2 and
3.4, interestingly propose time series and functional approaches,
respectively. The latter approach produced generally better predictions
with respect to the first one; this might be due to the specific correlation
8

structure usually encountered in MIRS data. In fact, even if neighboring
wavenumbers tend to be highly correlated, strong relationships are often
seen among spectral regions being far one from the other, since chemical
constituents might have different absorption peaks at different spectral
regions [see Ref. [4]]. Time series models, more often accounting for
short term relationships and for more regular dependency patterns,
might fail to properly capture this behaviour in spectroscopic data. On
the other hand, the functional approach perfomed very well across the
different traits, providing the lowest RERR in the challenge. Even if the
spectra has already been treated before as continuous functions [1],
functional strategies are still not widespread in the chemometrics
framework. Nonetheless, as pointed out in Ref. [38] and as partially
confirmed by the results of the competition, functional data analysis can
find a fertile ground in infrared spectroscopy applications.

A last relevant point, which have been discussed and faced both in the
competition and during the whole workshop, is concerned with the
adoption of methods that automatically perform wavelength selection.
Often the participants advocated for the use of simpler methods which
provide indications about the relevance of the features, therefore
possibly providing more interpretable predictions from a practical
standpoint. In fact such methods, jointly with proper collaborations with
researchers with subject matter knowledge in the dairy framework,
might lead to obtain information having a practical utility at different
levels. For example from a commercial perspective, a proper identifica-
tion of the most influential variables, can lead to the production of new
spectrometers being cheaper and faster and possibly collecting data for
those specific wavenumbers only. This can lead to a rapid and more
pervasive diffusion of these technologies and, therefore, to an increase in
the amount of data collected and to new challenges from a modelling
standpoint.

5. Conclusion

The challenge organized during the first edition of the “International
Workshop on Spectroscopy and Chemometrics” provided some insightful
take home messages to both the participants and the researchers who
attended to their presentations. First of all, the results showed how, when
dealing withMIRS data, several different models provide good prediction
and how their ranking can be strongly trait dependent. This advocates for
the consideration of heterogeneous strategies when building calibration
models in this framework. Moreover, it has been shown how different
and less explored ways to treat spectral data, as for example adopting
functional approaches, can lead to good results. Lastly, during the whole
workshop, a lot of attention has been put on the necessity of relatively
simple, parsimonious and interpretable models which can be more
adequate when good predictions have to be complemented by the
extraction of new knowledge about the phenomenon under study.
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