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A B S T R A C T

In April 2022, the Vistamilk SFI Research Centre organized the second edition of the ‘‘International Workshop
on Spectroscopy and Chemometrics – Applications in Food and Agriculture’’. Within this event, a data challenge
was organized among participants of the workshop. Such data competition aimed at developing a prediction
model to discriminate dairy cows’ diet based on milk spectral information collected in the mid-infrared region.
In fact, the development of an accurate and reliable discriminant model for dairy cows’ diet can provide
important authentication tools for dairy processors to guarantee product origin for dairy food manufacturers
from grass-fed animals. Different statistical and machine learning modelling approaches have been employed
during the workshop, with different pre-processing steps involved and different degree of complexity. The
present paper aims to describe the statistical methods adopted by participants to develop such classification
model.
1. Introduction

The use of mid-infrared spectroscopy (MIRS) has become a relevant
topic in agri-food sciences, due to its capacity to routinely quantify
a wide range of important characteristics rapidly and cost-effective.
In particular, MIRS is nowadays commonly employed to monitor and
quantify milk quality parameters, such as concentrations of fat, protein,
casein, and lactose. These parameters are used for milk quality-based
payment schemes, genetic and genomic selection, and as farmers’ sup-
port tool. Spectral information generated from MIRS analysis have
also proven to be effective in predicting fine milk quality parameters,
including protein fractions, free amino acids [1,2], individual and
roups of fatty acids [3,4], milk processing traits [5,6], animal-related
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characteristics [7–9], and can be used as a tool for the verification
of the authenticity of agricultural foods [10]. A more extended list of
applications of MIRS in the dairy science framework can be retrieved
from the reviews by De Marchi et al. [11] and Tiplady et al. [12].

The two-day event ‘‘International Workshop on Spectroscopy and
Chemometrics’’ was organized by Vistamilk SFI Research Centre in April
2022, following its first edition held in 2021 [13]. The workshop
focused on describing the main challenges and applications of near and
mid-infrared spectroscopy in food, animal, and agricultural sciences
with internationally recognized researchers. Moreover, participants, on
a voluntary basis, were provided with a large dataset containing indi-
vidual cow milk spectra with the sole information on animal’s diet for
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a chemometric data competition. Such data presented many challenges
from a methodological and statistical point of view, due to the high
dimensionality of the spectral matrices, and strong collinearity between
adjacent spectral wavelengths. The chemometric challenge, therefore,
encouraged the engagement of participants with different background
and skills and required the application of different statistical and
machine learning strategies.

The purpose of the data challenge was to develop a model to
predict the diet fed to dairy cows by exploiting mid-infrared spectral
information. Participants, or groups of participants, were required to
apply their developed model to a test set containing only individual
milk spectra and to submit their prediction of animals’ diet. Since
participation was found to be high, six contributions out of twelve were
selected, according to criteria based on the accuracy of the predictions
and methodological innovativeness, to present their results both at the
workshop and in the present manuscript.

2. Data description and challenge

A dataset consisting of 4364 individual milk spectra from individ-
ual cows was collected between May and August in 2015, 2016 and
2017 [14]. The samples were from Holstein Friesian cows with different
parity from Irish Dairy Research Herd in Teagasc Moorepark, Fermoy,
Co. Cork. Three dietary groups were evaluated with 54 cows being
assigned to a dietary group each year. The three diet treatments were
grass (GRS) which consisted of perennial ryegrass only, clover (CLV)
which consisted of perennial ryegrass with 20% annual clover sward,
and total mixed ratio (TMR) where cows were fed grass silage, maize
silage and concentrates while being maintained indoors for the full
season. Milk samples were collected in the morning (AM) and evening
(PM) milking session; subsequently AM+PM samples were pooled and
analysed weekly using Pro-FOSS FT6000 (FOSS). The output spectrum
contained a total of 1060 transmittance data points in the range from
925 cm−1 to 5000 cm−1.

The dataset was divided into training (3275 spectra) and test (1089
pectra) data; for the latter only spectral (i.e., independent variables)
nformation was provided, while diet information, to be used as a
lassification (i.e., dependent) variable, was available for the training
et. The training data included 1094 spectra for GRS, 1120 spectra from
LV and 1061 spectra for TMR. There were no missing values in the
raining or test set. The specific information about the wavenumbers
ad not been shared with the participants.

The three dietary groups were carefully selected based on their char-
cteristics. As described by Frizzarin et al. [15], pasture-based diets are
asily discriminated from TMR diets, while discriminating between GRS
nd CLV diets is much more difficult due to the similarities in the sward
omposition resulting in similar milk composition. However, with the
ncreased pressure to reduce fertilizer use, and the introduction of
ulti-species swards, the development of a robust discriminant model

or classifying milk spectra based on diet is of paramount importance.
After the analysis, the participants submitted their predicted values

or the test dataset and a short explanation of the methodology used.
he best methods were selected based on the accuracy of the predic-
ions for the test dataset. The accuracy was calculated as the proportion
f the correctly classified samples divided by the total number of
amples in the test dataset.

. Modelling approaches and results

.1. Participant 1

The data were analysed following different modelling strategies,
ocusing both on methods that considered spectral proximity of the
avelengths and on methods that do not. All the analyses have been
ainly conducted using Python libraries pandas, sklearn, sk-
2

time and matplotbib [see 16, and references therein]. The open
source code is available at https://github.com/mlgig/vistamilk_diet_
challenge and readers can refer to it for the specific details about the
implementation of all the methods outlined in this Section.

As a first step, some descriptive statistics were computed, and the
outliers have been removed, following both the recommendations given
prior to the competition and a visual inspection of the data. In the
subsequent step, the labelled dataset was split according to a 3-fold
cross-validation (3CV) strategy. Therefore, the best model was selected
based on cross-validation accuracy, and then trained on the full training
set and used to perform prediction on the provided unlabelled test set.

In order to predict the diet, the following classification strategies
were considered:

• Tabular models: each sample is considered as a vector of un-
ordered features. In particular, Ridge Classifier, where a penalty
shrinking parameters towards zero is imposed on the coefficients
of a logistic regression model [see e.g., 17], and Linear Dis-
criminant Analysis (LDA) were tested. In the following, these
methods were coupled both with feature selection strategies
and with random polynomial feature transformations. The latter
approach first used sklearn routines to create new features
(see, https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.PolynomialFeatures.html). For example, for fea-
tures 𝑎, 𝑏, 𝑐, a polynomial transformation of degree 2 will generate
the features 1, 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑐, 𝑎2, 𝑏2, 𝑐2. By generating these fea-
tures, this approach aimed to check if non-linear interactions
improved the classification. Finally, a new approach (random
polynomial transformation) is presented, which aims to diversify
the polynomial features (by random sampling) while keeping low
computational requirements.

• Deep Neural Network Models: a family of approaches based on
deep neural networks, both fully connected and convolutional,
were tested. This strategy implicitly generates complex features
interactions, as captured by the network architecture.

Note that previously obtained results [13] suggest that tabular
methods work quite well with spectroscopy data. Moreover, follow-
ing the suggestions in [15], feature selection strategies were coupled
with the information about the presence of water regions in the spec-
tra. In addition, state-of-the-art time series classification algorithms,
such as ROCKET [18], MiniROCKET [19], MrSQM [20,21] and Fresh-
Prince [22], were tested. Lastly, ensemble methods were applied, aiming
to mix together time series and tabular models, to combine their pre-
dictions and strengths. Nonetheless, these approaches have been out-
performed by the ones mentioned above, therefore the corresponding
results are not shown in the next sections.

3.1.1. Tabular models, feature selection and transformation
In Table 1, results for the best tabular methods are presented.

Both the ridge classifier, appropriately tuned, and LDA performed quite
well, while being extremely fast to train. Nonetheless, the selection of
some specific wavelengths seemed to improve the accuracy further. In
fact, both the removal of the noisy water regions and the data-driven
feature selection (performed using the SelectFromModel routine in
ython), provides better results.

Nevertheless, all these approaches hover around 80% accuracy,
herefore, in order to improve it, the data were augmented considering
olynomial features of degree two (using sklearn method Poly-
nomialFeatures(degree = 2)). This led to an increase of the
accuracy to 84.4%. The LDA component visualization for the model
with Feature Selection and Polynomial Features, applied on the un-
labelled test dataset, is shown in Fig. 1 and a good discrimination
etween the three classes is clearly visible.

The improvements obtained when considering polynomial features,
ome at a price in terms of the computational requirements. In fact,
tarting from the 1060 original wavelengths, the addition of second-
egree polynomial features resulted in a total number of variables

https://github.com/mlgig/vistamilk_diet_challenge
https://github.com/mlgig/vistamilk_diet_challenge
https://github.com/mlgig/vistamilk_diet_challenge
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
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Fig. 1. LDA visualization for the model Feature selection + Polynomial features + LDA, applied to the unlabelled test data to predict class labels.
Table 1
Accuracy results, evaluated on the 3-fold cross-validation, for the tabular methods
considered, coupled with feature selection strategies.

Method Accuracy

Ridge Classifier 0.760
LDA 0.747
Feature selection + Ridge Classifier 0.777
Feature selection + LDA 0.778
No water + Ridge Classifier 0.777
No water + LDA 0.783
Feature selection + Polynomial features + LDA 0.844
No water + Feature selection + Polynomial features + LDA 0.844

Table 2
Examples of RPolyTransformer features used. Here 𝑥𝑗 denote the 𝑗th wavelength.

(𝑥32 ∗ 𝑥19) + 𝑥103 − 𝑥2
(𝑥102 ∗ (𝑥78) + 𝑥26)
(𝑥1 − 𝑥150) + 𝑥64 ∗ 𝑥4 ∗ 𝑥5

which made the model estimation task unfeasible. To address this issue,
in this work a new Random Polynomial Features (RPolyTransformer
in the following) approach was introduced. The key idea was to im-
plement random sampling in the non-linear feature space. This lead to
relevant advantages as the total number of features can be controlled
and it can consider both higher-degree (>2) polynomial features and
complex mathematical functions (e.g., cosine, exp).

This strategy firstly generated 𝐾 random arithmetic expressions (see
Table 2 for some examples), which are then used to compute 𝐾 non-
linear features. From the new and the original features, 𝐾∗ variables are
elected using SelectKBest from sklearn. The hyperparameters 𝐾

and 𝐾∗ were optimized via cross-validation in the final model (see the
inal row of Table 3).

In Table 3 the results obtained with this method, again combined
ith different classifiers and feature selection approaches and tested
ith the full data and the data after water region removal, are pre-

ented. At first, when combining RpolyTransformer with a classi-
ier, a significant drop in the accuracy was observed, if compared with
imple tabular models. Ridge was more accurate than LDA but it was
till far behind the previous results. However, by carefully filtering the
eatures either automatically with SelectFromModel or manually
y removing the water regions, the results improved noticeably. In
3

Table 3
Results for different combinations with RPolyTransformer. SelectFromModel
and SelectKBest are feature selection modules to remove noise from data (the
former) and select the most discriminative non-linear features (the latter).

Method Accuracy

Region: FULL

RPolyTransformer + Ridge Classifier 0.717
RPolyTransformer + LDA 0.619
SelectFromModel + RPolyTransformer + SelectKBest + LDA 0.848

Region: [925:1585, 1720:2989]

RPolyTransformer + Ridge Classifier 0.805
RPolyTransformer + LDA 0.847
SelectFromModel + RPolyTransformer + SelectKBest + LDA 0.843

Region: [925:1585, 1720:2989, 3738:3807]

RPolyTransformer + Ridge Classifier 0.811
RPolyTransformer + LDA 0.833
SelectFromModel + RPolyTransformer + SelectKBest + LDA 0.835

Optimized model
Region: [925:1585, 1720:2989]
RPolyTransformer(𝐾 = 17 000) + SelectKBest(𝐾∗ = 7000) + LDA 0.864

these experiments, LDA outperforms Ridge consistently. Compared to
the PolynomialFeatures method, the one proposed here is faster
(a few seconds versus a few minutes) and just as accurate. However, the
initial results without noise reduction (i.e., feature selection) suggest
that this strategy is more sensitive to noise in the data.

3.1.2. Deep learning models
When considering deep learning models, the task of exploding

the feature space and learning feature interactions is completely de-
ferred to the network, without requiring any feature engineering steps.
In turn, deep neural networks require a careful design process, to
avoid overfitting and to identify the best model architecture and input
modality.

The designed model architectures considered here can be grouped
into two main categories, namely, Fully Connected Networks (FCNs)
and Convolutional Neural Networks (CNNs). FCNs do not require any
manipulation or adaptation of the input data, as each single wave-
length is treated as an independent feature and fed to an input unit.
In contrast, CNNs require the data to be bi-dimensional, image-like
matrices, as they are commonly used to address image classification



Chemometrics and Intelligent Laboratory Systems 234 (2023) 104755M. Frizzarin et al.

c
C
s
u
k

d
t
p
o
a
s

S
d
o
n
l
o
v
p
s
t
e

o
a
o
a
s
w
r
r
w
o

Fig. 2. Spectroscopy sequences arranged as image structures. In both examples, the padding values are visible at the bottom of the resulting images. Values are normalized in the
0–1 range for convenience.
problems. For this family of networks, the input waves need then to
be vertically stacked as 2D arrays and therefore, in order to fit the
closest squared dimension, padded with trailing zeros. An example of
how the spectroscopy samples can be presented to the CNNs is provided
in Fig. 2. Additionally, a third group of models is tested for this
hallenge, namely, CNNs based on dilated kernels (further denoted as
NN_DILATED). Whilst regular CNNs extract features through compact
quared filters, or local receptive fields, the CNN_DILATED network
tilizes filters that are spatially dilated by a fixed factor [23]. Dilated
ernels are commonly used in semantic image segmentation.

All the models in this group were trained on both the full training
ataset and on the water reduced one. When the CNN models were
rained, the full data were shaped into images of shape 33 × 33 with a
adding of 29 values, while the reduced data were shaped into images
f shape 23 × 23 with a padding of 11 values. As already mentioned,
ll padding values were zeros, and they were appended to the original
equences.

The full list of the implemented architectures is presented in Table
1 in Appendix A.1. The experiments were conducted on the previously
escribed 3-fold cross-validation splits; note that, for each split, 20%
f the training data was held back for validation purposes, to identify
etwork hyperparameters such as number of training epochs, initial
earning rate, or regularization rates. Models were trained for a total
f 50,000 epochs, with an early stopping policy used to monitor the
alidation loss to detect overfitting and save time during the training
hase. The final model used to classify the provided unknown data was
elected as the overall best performing architecture, and trained over
he full training data for a number of epochs set as the average of the
pochs reached during the 3CV training.

All models were implemented using TensorFlow [24], and trained
n a workstation featuring a single GPU, model Nvidia Titan XP. Results
re presented in Table 4, which contains the training performances
btained over the 3-folds CV experimental campaign. For all the tested
rchitectures, excluding the water regions from the input waves re-
ulted in a performance increase of roughly 12%–13%. The FCN model
orking on data after water-region removal, achieved the highest accu-

acy across the 3 splits, with an average of 84.7%. Similar unreported
esults were obtained also considering a single split validation strategy,
hich furthermore demonstrated that convolutional models tend to
verfit the input data quite fast.
4

Table 4
Training results on the 3CV splits.

Model Data Split 1 Split 2 Split 3 Average

FCN Full 0.670 0.677 0.675 0.674
No water 0.854 0.851 0.837 0.847

CNN Full 0.686 0.684 0.670 0.680
No water 0.806 0.836 0.832 0.824

CNN_DILATED Full 0.678 0.684 0.652 0.671
No water 0.824 0.812 0.807 0.814

3.2. Participant 2

All the processing steps and the algorithm implementation was com-
pleted using MATLAB [25]. After having imported the dataset in tabular
form, the outliers were identified as those observations with at least
one wavelength with more than three scaled median absolute deviation
from the wavelength specific median (see https://uk.mathworks.com/
help/matlab/ref/isoutlier.html for further details). Classification was
performed using a set of algorithms such as Support Vector Machine
(SVM), K-Nearest Neighbours (KNN) and Linear Discriminant Analysis
(LDA). To optimize the number of predicting variables, coefficient’s
threshold and the regularization parameter was tuned using a 5-fold
cross-validation and classification accuracy was evaluated.

The best results were obtained using LDA, which was able to distin-
guish outdoor grass-feed cow’s milk from TMR with an accuracy of 95%
while differentiating grass and clover with an accuracy of 68%. Fig. 3
allows to visualize class boundaries by plotting the spectra projections
in the latent space spanned by the two discriminant functions. From
the figure, a clear boundary can be observed between the indoor and
outdoor feed classes, while there is a significant overlap between the
GRS and CLV classes. Therefore, the extracted components were then
considered as an input to a linear SVM model to improve classification
between outdoor feed classes. The combination of two classifier (LDA
+ SVM), resulting in a two-step approach, significantly improved the
overall classification accuracy (87.1%) as well as classification accuracy
between classes, as shown in Table 5.

3.3. Participant 3

The present work was developed independently by three group
members, following a common preliminary analysis of spectral data.

https://uk.mathworks.com/help/matlab/ref/isoutlier.html
https://uk.mathworks.com/help/matlab/ref/isoutlier.html
https://uk.mathworks.com/help/matlab/ref/isoutlier.html
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Fig. 3. LDA components extracted from the developed model.
Table 5
Confusion matrix obtained by combining LDA and SVM.

Predicted class

CLV GRS TMR

True class
CLV 83.5% 17.4% 0.7%
GRS 15.8% 81.6% 0.8%
TMR 0.7% 1.1% 98.5%

Results of the prediction on the test set provided for the chemometric
challenge were then compared to assess the agreement between the
three different statistical approaches employed.

3.3.1. Preliminary edits on spectral data
These edits were conducted on raw spectral data in both the training

and test sets using Python. Spectra expressed in transmittance were
onverted into absorbance by taking the log10 of the reciprocal of the

transmittance. Subsequently, spectral wavelengths associated to water
absorption, as well as non-informative regions, were deleted. This led to
a reduced version of the dataset, that has been used for the subsequent
analyses, with 511 remaining wavelengths in the regions between 2994
and 1682 cm−1 and between 1578 and 926 cm−1. A graphical repre-
entation of this procedure is reported in the supplementary material
Figure S1).

.3.2. First approach
To explore the multivariate structure of the dataset, Principal Com-

onent Analysis (PCA) was exploited on the training dataset, using
rcomp function in stats package and the factoextra pack-
ge [26] in the R environment [27]. The analysis revealed that most
f the data variability was explained by the first two Principal Compo-
ents (PCs), accounting together for the 88% of the total variance (see
he scree plot on the left top panel in Fig. 4).

Afterwards, possible outliers were detected using the algorithm
roposed by Filzmoser et al. [28] and implemented in the mvoutlier
ackage [29]; only the observations being both location and scatter
utliers were removed from the training dataset. As a results, a total
f 63 observations were removed from the training dataset.

After outliers removal, linear discriminant analysis was considered
sing lda function in the MASS package [30]. To test its accuracy,
5

as a first step the discriminant functions were applied to the training
dataset, with the aim of comparing the estimated classification with
the actual one. Therefore, LDA was first applied to maximize the
differences between TMR and the CLV+GRS (in the following named
PAST group). The LDA returned one Linear Discriminant (LD) function,
which was then applied to the training dataset to attribute the TMR diet
to observations. Afterwards, LDA was applied again by maintaining in
the training set only the observations belonging to the PAST group. The
obtained LD function was then applied to the whole training dataset
to discriminate between CLV and GRS diets previously categorized as
PAST. The vector with the predicted classes was then compared with
the vector of actual group classification in the training dataset, thus
computing the training accuracy. This approach resulted in an overall
model training accuracy equal to 83.3% (see Table 6); the scatter plot of
the first versus second linear dimension scores is depicted in the right
top panel in Fig. 4. Lastly, the LD functions obtained on the training
dataset allowed for the classification of the unknown observations in
the test dataset, with the results reported in Table 6.

3.3.3. Second approach
Principal component analysis (PROC PRINCOMP, SAS Institute Inc.,

ver. 9.4) was undertaken on the training set, as in Section 3.3.2.
Coherently, outlier removal was then performed by calculating the
Mahalanobis distance (MD) as the uncorrected sum of squares of the
first four centred and scaled PC scores, explaining up to the 98.21%
of the total spectral variance. Outliers were defined as samples whose
MD was greater than the 97.5th percentile of a 𝜒2 distribution with
4 degrees of freedom [31]. Following this approach, a total of 127
samples were discarded from the training set.

The discriminant model was developed following a multiple-step
approach. Firstly, a stepwise discriminant analysis was carried out in
order to identify the most significant wavelengths associated with the
three different diets using the PROC STEPDISC. A total of 88 wave-
lengths were retained and used for the subsequent canonical discrimi-
nant analysis, which was developed through the PROC DISCRIM. The
proportion of samples correctly classified was 73.38% (CLV), 73.70%
(GRS), and 97.62% (TMR), with an overall model accuracy of 81.32%.
The scatter plot of the first versus second canonical variables scores is
in the bottom left panel of Fig. 4. The wavenumbers with the greatest
(in absolute value) canonical discriminant function coefficients were
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Table 6
Summary of the results of the three different approaches.

Approach 1 Approach 2 Approach 3

Brief description Two steps DA in R Canonical DA with stepwise method in SAS DA with stepwise methods in SPSS
Number of samples (training set) 3180 3116 3153
Number of wavelengths retained 511 88 16
Accuracy (training set) 83.30% 81.32% 71%

Predicted diet for the samples in the test dataset (n cases)

TMR 344 326 365
CLV 367 342 326
GRS 366 353 386

Agreement between the approaches applied to the test dataset

Member 1
Member 2 84.21%
Member 3 72.90% 70.84%
Fig. 4. Explained variance by the first 10 principal components (top left), scatter plot of discriminant models developed by member 1 (right top), member 2 (bottom left) and
member 3 (bottom right).
between 1154 and 1162 cm−1, 2843 cm−1, 2874 cm−1, and 2882 cm−1,
thus providing some potentially relevant information to be explored to
assess which milk chemical features are more influenced by the dietary
regimen. The discriminant model was then applied to the test set to
obtain the prediction of cows’ diet on unknown milk spectra.

3.3.4. Third approach
Standard assumptions required for multivariate analyses were veri-

fied before proceeding to the main analysis. Two diagnostic measures
were used to identify the outliers for the predictors and the dependent
variables; in the former case Mahalanobis Distance (MD) was used to
spot multivariate outliers while, in the latter one, studentized residuals
were considered. Samples whose MD was greater than the 97.5th
percentile of the MD distribution and studentized residuals greater than
2.5 were removed. During this process, a total of 90 outliers have been
identified and excluded. Potential multicollinearity was then verified by
Tolerance and Variance Inflation Factors. Moreover, the ratio between
6

the number of cases and predictors was checked as an indicator of
the adequacy of the sample size; a ratio of 20 observations for each
predictor variable, with the smallest group size exceeding the number
of independent variables, is suggested [32,33].

LDA was then chosen as the main discriminative approach. The
stepwise method, using Wilks’ lambda 𝛬 as criterion, was adopted to
reduce multicollinearity and increase the case/predictors ratio, improv-
ing the adequacy of the sample size. Box’s test and log determinants
were considered to verify the equality of covariance matrices. The
canonical correlation and the proportion of between-group variance
that is due to each variate were used as measures of effect size [33],
while the performance of the LDA was evaluated by classification-
related statistics and leave-one-out CV [34]. The Scoring Wizard
command was finally used to apply the discriminant functions (DF) to
the test dataset, and the predicted probability was calculated to assess
its performance. Analyses were performed with SPSS software [35].

Standardized canonical DF coefficients of the variables selected
by DA and measures of effect size are shown in Table S2 in the
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Fig. 5. Results of classifiers on a 80/20 test-train split.
Supplementary Material. More than 90% of the total difference between
the groups was attributable to the first DF, with the Wilks’ 𝛬 (0.330)
indicating that it has a significant discriminating capacity (𝑝-value
< 0.001). Wavenumber 2851 cm−1 and 2890 cm−1 mostly contributed
to the discrimination of cows’ diet. The second DF only explained 6%
of the total variance, being nonetheless still significant (Wilks’ 𝛬 =
0.902; 𝑝-value < 0.001). Centroids (Table S3) and the plot of DF scores
(bottom right panel in Fig. 4) indicated that the first DF appropriately
iscriminate the TMR group from the others (i.e., CLV and GRS).
n the other hand, group separation on the second DF was poor;

n particular, CLV and GRS clusters were not clearly distinguished.
he cross-validation procedure indicated an overall model accuracy
f 71% (see Table 6), with different sensitivity between groups: over
0% for TMR samples, and below 65% for CLV and GRS samples. The
pplication of DFs to predict the diet of cows in the test data set showed
similar trend, with an expected sensitivity of 64%, 63%, and 87% for
LV, GRS, and TMR diets, respectively (Table S4).

Lastly note that, all the three approaches were applied and the
esults were compared at the end of the competition. Despite the better
rediction performance shown by the first approach on the training set,
he second approach proved to be the best for the prediction of the test
et.

.4. Participant 4

A conventional machine learning pipeline was used, composed of
eature (i.e., wavelength) selection and classification, with no outliers
eing removed from the original dataset. Dimensionality reduction
echniques such as Principal Component Analysis (PCA) and Indepen-
ent Component Analysis (ICA), as well as Extended Multiplicative
catter Correction (EMSC) and a data augmentation approach were
ested to improve the classification results [36]. EMSC represents a
reprocessing technique which removes multiplicative effects poten-
7

ially caused by physical phenomena such as light scattering, which
is commonly seen in reflectance spectroscopy, thus allowing for easier
modelization of chemical effects. On the other hand, the data aug-
mentation scheme increases the data set ten fold by adding random
variations in offset, multiplication, and slope, nine times to each sam-
ple. The variations were ±0.1 times the standard deviation of the
training set for the offset, multiplication was 1± 0.1 times the standard
deviations, and the slope adjustment was between 0.95 and 1.05 [36].

Subsequently a range of different classifiers, which have successfully
been adopted before on infrared spectroscopy data, were used. In par-
ticular, the considered models were K-nearest Neighbour [K-NN; 37],
Random Forest [RF; 38], Support Vector Classification [SVC; 39],
Multilayer-perceptron [MLP; 40], Linear Discriminant Analysis
[LDA; 41], Decision Tree Classification [42], Nu-Support Vector Classi-
fication [NuSVC; 43], AdaBoost Classification [44], Gradient Boosting
Classification [45], Gaussian Naive Bayes [46] and Quadratic Dis-
criminant Analysis [QDA; 47]. Other investigated predictive methods
belonged to the group of deep Learning (DL) techniques, and in partic-
ular one-dimensional (1D) Convolutional Neural Network (CNN). This
1D CNN makes use of six one dimensional convolutional layers, and a
number of max pooling, batch normalization and dropout layers. Each
1D CNN layer is followed by a max-pooling and batch normalization
layer. The one-dimensional CNN only used the raw spectra, as the use
of PCA and FastICA would be detrimental due to the transformation of
the sequence of the data.

Prior to the analyses, the dataset was split into a training set (80%
of the data), to train different models, and a validation set (remain-
ing 20% of the data), used to optimize the hyper-parameters and to
identify the best methods to be used for the final testing. This split
was made by utilizing the train_test_split function provided
through scikit-learn [16].

An initial experiment was performed on all classifiers without the
use of data augmentation or feature selection. This was carried out to
explore which classification method was performing better with the

raw spectral data. Fig. 5 shows the results obtained from the initial step
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Fig. 6. Results of classifiers on with different pre-processing methods.
with the 80/20 train/validation for different classifiers. All results gath-
ered were averages taken from three training and validation predictions
for each model. LDA gave the best results with an accuracy of 76%,
whereas the MLP and SVC produce some of the worst performances
with accuracies around 33%.

In the second stage, the classifiers were tested in conjunction
with PCA, ICA or data augmentation: for PCA and FastICA scikit-
learn methods were used, with the parameters being setted as Fas-
tICA(tol = 0.02, max_iter = 4000) and PCA(n_components
= 800). The use of PCA and ICA altered the data by reducing the
dimensionality, while on the other hand data augmentation increased
the number of samples. For data augmentation, the data augment
function from [36] was used. This increased the number of training
samples from 3244 to 19,464. At this stage, only a subset of the
previously tested model were considered, based on their performances
in the previous step. Fig. 6 shows the results of each classifier with each
re-processing method (base, ICA, PCA, data augmentation (Aug)).
rom these results, it was noted that LDA following data augmentation
chieved the highest accuracy with 82.7%. The greatest improvement
n the predictions was observed using MLP after ICA (improvement of
1%). An additional experiment was then carried out with just the use
f the LDA model. This was to show the importance of regions within
he spectra, and a number of different wavelength region were tested.
herefore, Fig. 7 shows the results of the LDA when removing different

spectral regions.
There was a general increase in accuracy over the base approach

hen data augmentation was used, with the only exception of CNN.
ith regard to wavelengths selection, there was no noticeable increase

n accuracy when focusing on a specific region in the spectra. Nonethe-
ess, the majority of the relevant information lied within the region
rom 925 cm−1 and 1597 cm−1, and there was a slight increase in
he accuracy of prediction of around 1% when using the range of 925
o 1585 cm−1 and 1717 to 2103 cm−1 compared to the full set of
avelengths.

.5. Participant 5

In order to prepare the data set for predictive analysis, some pre-
rocessing was considered. As directed by the challenge organizers,
utlying spectra were removed such that the data set consisted of
243 transmittance spectra covering 1060 wavelengths. Spectra were
ransformed to absorbance values by taking log10 of the reciprocal of
he transmittance values. In addition, following [15], a subset of 534
8

avelengths that lay outside the water-related high-noise-level regions
were identified as relevant for predicting a cow’s diet, although the
water-regions were not excluded at this point in the analysis.

To ensure a robust assessment, the dataset was split into training
and validation sets. In this case, the validation set was constructed
to control for batch effect confounding, which may bias estimates
for out-of-sample prediction [48]. Inspection of the data set revealed
that rows were ordered to have several consecutive observations of
each diet. Therefore, it was assumed that each set of consecutive diet
observations belonged to a single batch. In this manner, 90 batches,
30 for each diet, were identified. In addition, the data was collected
over three years [15], and so it was assumed that the first 30 batches
were collected in the first year of the study, the next 30 in the second
year, and the final 30 in the third. Based on these assumptions, the
validation set consisted of 996 spectra from 30 batches collected in
the study’s third year, which included ten batches for each diet, while
models have been trained on the 2247 remaining spectra. Training data
was randomly split into 𝑉 = 10 folds, with each fold including two
batches from each diet. Possible batch effect of repeated measurements
for a single cow were ignored.

In order to describe the predictive model used in this analysis, let
 =

{

𝑦𝑖, 𝐱𝑖
}𝑁
𝑖=1 denote the observed data, where the response variable

𝑦𝑖 ∈ {1,… ,𝑀} represents the diet of the 𝑖th cow and covariates 𝐱𝑖 ∈ R𝐷

represent the corresponding milk absorbance spectrum. Note that this
analysis considers 𝑀 = 3 diets, 𝐷 = 1060 wavelengths, and 𝑁 = 3243
training observations. The objective of the proposed predictive models
is to learn P (𝑦 ∣ 𝐱), that is, the probability that a given milk sample
comes from a grass, clover or TMR-fed cow, given the spectrum for
that sample.

The first step in constructing a predictive model is to define a
deterministic mapping function 𝑔 ∶ 𝐱𝑖 → 𝐳𝑖, for 𝐳𝑖 ∈ R𝐷′ , with 𝐷′ <
𝐷, which describes a feature extraction procedure. Two approaches
to feature extraction were considered here. The first simply selected
the 𝐷′ = 534 relevant wavelengths identified by [15] such that 𝐳𝑖 is
the 𝑖th absorbance spectrum after removing the high-noise-level water
regions and standardizes each wavelength. The second was based on
the wavelet transform, a popular technique for signal processing which
can be applied for data compression, smoothing, and multi-resolution
analysis [49], and proceeds in three steps. After setting high-noise-
level regions of each spectrum to 0, a thresholded wavelet transform
provides a set of wavelet coefficients. The feature vector 𝐳𝑖 is then the
vector of wavelet coefficients that are non-zero for at least one of the
𝑁 spectra, in this case 𝐷′ = 594. The thresholded wavelet transform
is available with the wavethresh R package [50], using Daubechies

least symmetric wavelet as the mother wavelet and Bayesian approach
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to thresholding wavelet coefficients [51]. Note that setting wavelengths
in the high-noise-level regions to 0 means the wavelet transform pre-
serves the spectral distance between wavelengths while ensuring that
the corresponding wavelet coefficients are 0.

Given the feature vector 𝐳𝑖 = 𝑔
(

𝐱𝑖
)

, a multinomial regression model
or diet was assumed, such that

(

𝑦𝑖 = 𝑚 ∣ 𝐳𝑖
)

=
exp

(

𝜷⊤
𝑚𝐳𝑖

)

∑𝑀
𝑙=1 exp

(

𝜷⊤
𝑙 𝐳𝑖

)
, (1)

or 𝑚 = 1,…𝑀 where 𝜷𝑚 ∈ R𝐷′ , implicitly assuming that 𝐳𝑖 includes
n intercept term. The glmnet package [52] fits this model to data
fficiently. For simplicity, a LASSO model was fitted, where 10-fold
ross-validation on the training data informs the penalty hyperparam-
ter.

Finally, the predictive performance of the proposed models was
ompared by analysing their log-loss on the validation data set. That
s, for a validation data set and a model 𝑗 for 𝐳𝑖 = 𝑔

(

𝐱𝑖
)

, the log-loss
s defined as

𝑗 = − 1
𝑁 ′

𝑁 ′
∑

𝑖=1

𝑀
∑

𝑚=1
I
(

𝑦𝑖 = 𝑚
)

lnP
(

𝑦𝑖 = 𝑚 ∣ 𝐳𝑖,𝑗
)

, (2)

where 𝑁 ′ is the number of observations in the validation set, I () is
the usual indicator function that is equal to 1 when  is true and 0
otherwise and P

(

𝑦𝑖 = 𝑚 ∣ 𝐳𝑖,𝑗
)

is the probability under 𝑗 that 𝑦𝑖 =
𝑚 given 𝐳𝑖. The log-loss is a proper scoring rule for evaluating predictive
models [53], where smaller scores are better, and so encourages the
analysts to express their true belief about the data. It is also straight-
forward to set benchmarks for assessing the quality of predictions a
priori. For example, for any 𝑀 a mean log loss of 0 represents perfect
predictive performance, while when 𝑀 = 3 as in the considered case, a
mean log loss of − ln(1∕3) ≈ 1.1 represents ‘‘guessing’’, where we predict
each category uniformly at random. For completeness, the classification
accuracy of 𝑗 was also assessed.

The results of this analysis are presented in Table 7. The first
model considered was a LASSO-penalized multinomial regression of
the raw milk spectra on the diet, where high-noise-level regions of the
spectrum was excluded and the wavelengths standardized. The tuning
parameter 𝜆, controlling the strength of the penalization, was selected
to minimize the multinomial deviance (a statistic proportional to the
mean log-loss) via 10-fold cross-validation. The log-loss of this model
on the training set was 0.57, which corresponds to a diet classification
accuracy of 77%. A closer examination of the predictions revealed that
9

Table 7
Predictive model assessment.

Model In-sample log-loss Validation log-loss

Raw spectra 0.57 0.82
Wavelet coefficients 0.74 0.88

when CLV and GRS were treated as a single category (pasture-fed), it
as possible to predict TMR with an accuracy of 94%. When trying

o predict whether the cow was fed CLV, given that it was pasture-
ed, an accuracy of 72% was achieved. Predictive performance was
uch poorer on the validation set, with an overall log-loss of 0.82,

orresponding to an accuracy of 58%. The model predicted TMR with
n accuracy of 88%. However, for cows known to be pasture-fed, it
redicted CLV with an accuracy of 49%.

The second model considered a multinomial regression of the non-
ero thresholded wavelet transform coefficients of the milk spectra on
iet. As above, the model was fitted by maximizing a penalized log-
ikelihood and by using 10-fold cross-validation to tune 𝜆. For this
odel, the log-loss on the training set was equal to 0.74, corresponding

o an accuracy of 69%, although it predicted TMR with an accuracy of
8%. For pasture-fed cows, it predicted CLV with an accuracy of 68%.
s with the first model, performance dropped for the validation set. The

og-loss was 0.88 and TMR accuracy was 79%. Given that a cow was
asture-fed, the CLV accuracy was 47%. These results are summarized
n Table 7.

The obtained results clearly showed that milk spectra carry a signal
istinguishing pasture-fed cows from TMR, but that it was difficult
o distinguish between CLV and GRS. However, the predictive per-
ormance was much poorer on the validation dataset than for the
raining one, indicating that the adopted models did not offer a robust
ut-of-sample predictions. Without careful consideration of potential
atch effect confounders within the sampled spectra, we are likely to
verestimate the out-of-sample performance of our models. Collecting
ata from more cows over a more extended period should alleviate this
ssue and allow more robust models to be developed.

Lastly, no evidence was found to suggest that wavelet transformed
pectra provided helpful insight into the cows’ diet. However, that is
ot to say that some alternative basis expansion could improve the
urrent predictive models. In fact, given more data on the relationship
etween milk spectra and diet, the development of models which allow
or non-linear relationships between wavelengths may prove a fruitful
venue for future research.
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Fig. 8. Spectra absorbance and the corresponding Fisher score with points on the 𝑥-axis denoting the wavelengths selected by the GA.
3.6. Participant 6

As a first step, the training set was centred and scaled and the
same transformation was applied to the test set. In the following
analyses, no outliers were removed while all the spectra were trans-
formed from transmittance to absorbance. Wavelengths from high-noise
level spectral regions between 1720 and 1592 cm−1, between 3698
and 2996 cm−1, and greater than 3818 cm−1 were removed from the
analysis following Frizzarin et al. [15].

The Fisher score, being the ratio of between to within diet group
variance, was calculated for all the wavelengths in the training set. For
wavelength 𝑗, the Fisher score is given by:

Fisher score𝑗 =
∑𝑀

𝑚=1
∑𝑛

𝑖=1 I(𝑦𝑖 = 𝑚)(𝑥̄(𝑚)⋅𝑗 − 𝑥̄⋅𝑗 )2
∑𝑀

𝑚=1
∑𝑛

𝑖=1 I(𝑦𝑖 = 𝑚)(𝑥𝑖𝑘 − 𝑥̄(𝑚)⋅𝑗 )2

where 𝑗 denotes the wavelength index, 𝑖 = 1,… , 𝑛 denotes the spectra
with 𝑛 being the number of spectra in the training set, 𝑚 denotes
he diet group with 𝑀 = 3, I(𝑦𝑖 = 𝑚) is an indicator of diet group
pectra 𝑖, 𝑥̄⋅𝑗 is the average of wavelength 𝑗 for all spectra (𝑖 = 1,… , 𝑛),
̄ (𝑚)⋅𝑗 is the average of wavelength 𝑗 in diet group 𝑚. A wavelength

ith the highest Fisher score in each of the discarded regions was
ept in the analysis. Wavelengths with Fisher score lower than 0.002
ere removed from further analysis, thus leaving 380 wavelengths. In
rder to compare algorithms and carry out further feature selection,
he training set was itself randomly split 75/25 into training and testing
ets stratified by diet. A genetic algorithm [54], implemented in library
enalg [55] was used as a stochastic search method to find an optimal
ubset of input wavelengths for classification. Individuals in the GA
opulation were represented by binary strings denoting wavelengths to
e included or excluded for prediction. Objective function was set to be
he average accuracy from ten cross-validated fits of linear discriminant
nalysis (LDA) of the training subset. GA was run for 200 iterations with
opulation size set at 200. Fig. 8 shows the spectra absorbance and
he corresponding Fisher scores, with points denoting the wavelengths
elected by the GA.

The best configuration from the final GA population had 70 wave-
engths included. These wavelengths were used as inputs to the follow-
ng classification algorithms:
10
Table 8
Average accuracy for over ten random splits of the training set for classifiers. LDA:
linear discriminant analysis; PLS: partial least squares regression; EN: elastic net;
BKPC: Bayesian kernel projection classifier; SVM: support vector machine; LASSO: Least
absolute shrinkage and selection operator; RF: random forest.

Accuracy LDA PLS EN BKPC SVM LASSO RF

Mean 0.774 0.769 0.765 0.759 0.738 0.736 0.509
SD 0.008 0.009 0.007 0.008 0.007 0.006 0.014

• Linear discriminant analysis (LDA), library MASS [30];
• Partial least squares discriminant analysis (PLS-DA) [56];
• Least absolute shrinkage and selection operator [LASSO; 57],

library glmnet [52];
• Elastic net [EN; 58], library glmnet;
• Random Forest [RF; 59], library ranger [60];
• Support vector machines [61], library kernlab [62];
• Bayesian kernel projection classifier [BKPC 63], library BKPC

[64].

All analyses were done using R [27], the code is available in the
github repository https://github.com/domijan/KD_Vistamilk2022.

The training set was randomly split into ten further training/testing
sets of equal size, stratified on diet. The average accuracy and standard
deviation over the ten random splits for all the classification algorithms
are given in Table 8. LDA performed best with average accuracy of
77.4%. PLS-DA and EN overall accuracy was of 76.9%, 76.5% respec-
tively. The algorithms were tuned using further cross-validation of the
training sets. For BKPC and SVM, the best results were obtained with a
linear kernel. The predictions of the LDA were submitted to the compe-
tition. Moreover, genetic algorithm was able to select a much smaller
subset of wavelengths without loss of classification performance.

4. Discussion

While the dataset provided for the data competition included three
different classes to discriminate (i.e. TRM, GRS, and CLV), the main
difficulty of the present data competition was concerned with the

https://github.com/domijan/KD_Vistamilk2022
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Table 9
Accuracy computed on the test dataset for all the participants.
Participant Section 3.1.1 Section 3.1.2 Section 3.2 Section 3.3.2 Section 3.3.3

Test accuracy 0.871 0.837 0.798 0.711 0.783

Participant Section 3.3.4 Section 3.4 Section 3.5 Section 3.6

Test accuracy 0.796 0.786 0.724 0.766
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discrimination between GRS and CLV diets. In fact, the ability of
distinguishing pasture and TMR dietary regimens has been already
documented [15], with the discrimination being driven mainly by the
different content of fatty acids (FA) in milk [65]. In particular, milk
from pasture based diet is generally richer in saturated FA such as
linoleic acid, poorer in saturate FA, and have a lower omega6/omega3
ratio [see e.g. 66–69]. As MIR is known to be able to predict, with a
ertain degree of accuracy, the different FA in milk [70], spectral data
re therefore capable to discriminate also TMR and pasture diets.

On the other hand, since GRS and CLV dietary regimens differed
nly for the inclusion of 20% annual clover in perennial ryegrass sward
or the CLV diet, induced differences in the FA might be less clear. As
consequence, to discriminate GRS and CLV exploiting spectral infor-
ation only, a careful and accurate tuning of the modelling choices
as required. In this regard, interestingly, some participants proposed

wo-steps classification approaches, with the first step focusing on TMR
nd pasture based diets, while the second one aimed at distinguishing
LV from GRS samples. As an example, participant 2 highlighted a
otentially significant gain in terms of accuracy when considering an
nsemble approach, where components extracted from LDA was used to
rain a linear SVM, better discriminating between GRS and CLV. Again,
n Section 3.3.2 two consecutive LDA models have been fitted, with the

first one being used to discriminate TMR from pasture while the second,
exploiting the discriminant function on the pasture samples only, was
trained to classify GRS and CLV.

Generally speaking, linear approaches introduce a gain in inter-
pretability of the results, while paying a price in terms of accuracy.
Nonetheless, the review of the different approaches presented in this
paper showed that strong performances were achieved resorting to lin-
ear classifiers. In fact, remarkable results were obtained when adopting
LDA-based approaches (see, e.g., participants 1, 2, 4 and 6), which
were certainly proven effective in discriminating TMR and pasture
diets and, as highlighted above, were also used as a building block
for promising two-steps procedures. Nevertheless, the approaches pre-
sented in Sections 3.1.1 and 3.1.2, which attained the best test set
prediction accuracies as it is displayed in Table 9, pointed towards
the need of considering non-linearities, especially when the aim is to
discriminate between GRS and CLV. This is confirmed by the confusion
matrix displayed in Table 10, where it is shown that these two dif-
ferent dietary regimens are discriminated remarkably well, especially
if considering their similarities from a compositional standpoint. Note
that, while with FCN interpretation of the results and exploration of
the most informative wavelengths are compromised, the approach in
Section 3.1.1, which is considering again LDA as the final classifier,
tends to be more transparent. However, the clever random polynomial
variables generation proposed tends to produce new features which are
difficult to interpret from a chemical standpoint. Therefore, as it often
happens in modern data analysis routine, the adopted approaches have
to be tailored on the specific aim to pursue, often dealing with the
standard trade-off between accuracy and interpretability.

Data transformations, such as first and second derivative, are ex-
tensively used in near infrared spectroscopy. In the current study with
MIRS data, as widely undertaken, the only transformation applied
to the spectral data was their conversion from transmittance to ab-
sorbance, since the other tested transformations did not show a strong
impact on the quality of the predictions. On the other hand the removal
of noisy and non-informative spectral regions seemed to be of funda-
mental importance, as reported by the participants which tested their
11

t

Table 10
Final confusion matrix obtained with the approach outlined in Section 3.1.1.

Actual

CLV GRS TMR

Predicted
CLV 312 55 5
GRS 61 300 5
TMR 6 7 326

prediction methods before and after their removal. For example, results
from Section 3.1 showed an improvement of 11.6% and of 25.7%
when ridge regression and LDA were respectively used in combination
of new polynomial variables generation after water regions removal.
Again, in Section 3.1.2 an improvement of the prediction performance,
from 17.5% (CNN) to 20.5% (FCN), after removing the water regions
also when using deep learning methods is shown. Participant 1 also
demonstrated the possibility to select the important variables directly
from the spectra, in fact they achieved the best prediction results using
a variables selection approach starting from all the spectral information
(see Table 1). Variable selection was also tested in Section 3.6, where
a genetic algorithm was used to select a smaller subset of wavelengths
without substantial loss in classification performance.

In Section 3.3, the participants investigated the pairwise agreement
mong the three different approaches, to calculate by comparing the
bservations and quantifying the percentage of classifications in agree-
ent on the total number of observations (Table 6). Methods applied

y members 1 and 2 gave similar predictions (agreement of 84.21%),
hereby agreement between predictions from member 3 was between
0.84% (with member 2) and 72.90% (with member 1). Although
trong, the discrepancies among the three predictions could be due to:
i) the different number of samples retained for model development,
nd (ii) the different number of predictors (i.e., wavelengths) used
or training, considering that the first member used the entire edited
pectra, whereby the second and third applied different algorithms
or wavelengths selection. This investigation from the third participant
ermits to understand that differences in data editing and different
ethodologies selected for the predictions, even if similar, brought to

onsistently different class predictions.
A final discussion point was related to the creation of the test

ataset. The dataset was created by the organizers, who splitted the
riginal dataset in 75% training and 25% test dataset, considering a
orrect division of the classes across years into the 2 datasets. The
iscussion revolved around whether or not divide the dataset into 75%
raining and 25% testing, or dividing the dataset according to time
omponents, like keeping the samples recorded in 2015 and 2016 into
he training dataset, and the samples recorded in 2017 in the test
ataset. Such temporal division would permit to understand if samples
ecorded in previous years can predict future information.

. Conclusion

Thanks to the high number of participants, with different back-
rounds, who provided their prediction results, the data competition
as a thought-provoking occasion to discuss some of the challenges
rising when analysing spectral data and provided insightful indica-
ions.

As mentioned in the paper and as it was previously shown in [15],

he stronger compositional dissimilarities between pasture-based diet
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and TMR-based ones induced an easier discrimination between the
corresponding classes. This generally led to overall good performances,
in terms of accuracy, for the adopted methods (see Table 9). On
the other hand, the distinction between milk samples originated from
GRS and CLV was more challenging. Nonetheless, as it is shown in
Table 10, some hand-crafted strategies specifically proposed for this
competition showed more than promising results also when employed
to detect differences in the composition between distinct pasture-based
feeding regimens. In particular, non-linear transformations of the orig-
inal wavelengths and two-steps classification approaches, outlined in
Sections 3.1 and 3.3, seemed to be effective in solving this problem.

Pre-treatments were generally not beneficial for the improvement
of the prediction equations, while the deletion of the spectral regions
related to water (with manual selection of these regions or by means
of automatic variable selection procedures) improved the prediction
results. The utilization of linear models, in particular LDA, provided
some of the best results, and the overall best prediction was achieved
using LDA applied after wavelengths selection and random polynomial
generation, as it was shown in Table 9. When spectral analyses are
undertaken it is important to know not only the best possible statistical
methods to use for the analyses, but also what is the best data editing
for such data.
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